High Resolution Geodetic Measurements of
Co-seismic Fault-zone Deformation for PFDHA
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Introduction

« Aim: Use high-resolution geodetic data that can resolve
near-field surface deformation to improve PFDHA models.

» Motivation: Measuring distributed faulting is highly
challenging in the field (largely due to lack of cultural
features that span the fault zone in perpendicular manner).

« Method: Use optical and SAR pixel tracking from multiple
M,, > 7 surface rupturing earthquakes to measure
distribution of strain across fault.
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Multiple easrthquakes
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Landers 1992 ~1000

Hector Mine 1999 7.1 50 ~700 SS

EMC 2010 7.2 120 500-1500 SS, normal

Balochistan 2013 7.7 240 30 SS
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Methods: Optical & SAR pixel tracking

Correlate optical radiometric data Correlate amplitude of radar
(visible EM) backscatter (microwave EM) > 3

look directions = 3D motion
COSI-Corr: Co-registration of Optically Sensed Images and Correlation
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34°15'

Results — Optical pixel tracking — 2D
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Results — Optical pixel tracking — 3D

* El-mayor Cucapah, M, 7.2, 2010, Mexico
 Oblique: strike-slip, normal N e\ e

between M and My T between Mgand My

* Rupture length: 120 km LA VAL

Offset measured between My and M.

Real horizontal offset Leprince et al. (2012)
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Palu, Indonesia, Mw 7.5 N2 Ay
* 150 km surface rupture
« Sentinel 2 data
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https://twitter.com/SotisValkan

Radar pixel offsets — 3D
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* Japan, 2016, Mw 7.1

& * Oblique: Strike-slip,
i normal
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g * Rupture length: 40 km
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* Noise level ~20 cm (1
sigma)
Pixel resolution: ~25 m
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2017 Mw 7.8 Kaikoura, NZ (?) - 3D SAR

* Highly complex event, > 12
major faults.

e Underlying mega-thrust
thought to participate, and
perhaps primarily control
rupture propagation and
explain the large rupture
complexity.

* Due to uniqueness of

rupture, debate whether to
include this in PFDHA?
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dz Multiple Sentinel 1A (ESA) radar scenes,
C-band (3 cm wavelength)
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How to calc. probabilities using geodetic
data? Key assumptions:

*  We use strain, not

A displacement on indiv.

/T/T fractures.

vy * Due to geodetic

v imagery averaging
spectral properties over

D an area + corr. window

. ?
Al° - cant resolve
4 ‘[ T T individual fractures, the
WW velocity field is almost
‘/ continuous.
» Therefore product
Zones we’ll provide is the
amount of shear

/I ;_b? strain a structure will

: experience over a

Hl lw * given length scale ==

total displacement.

Johnson et al. (1994)
/1(8 = go)xyz = a(m) P[ST * 0 |m] fP[e > einelasticl T, Z] P[E = gol T, einelastic] dr
r
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Results - profiles

Vector Field Showing Ground
Deformation at the Kickapoo Stepover
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Draw stacked profiles perpendicular to fault
(~200 m width) = fauzlt parallel motion
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Results - Probability calculation

4e-3 = yield strength of granite 2>
conservative inelastic strain

Conditional Probability (e>eo)

A(e = €y)xyz = a(m) P[sr # 0 |m] f

P(e > €l m,r,Slip)-Prob of exceeding shear €, =0.04
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Similar to Petersen et al. (2011),

but using strain
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Results — Hazard curve

Strain Hazard Curve
Fault Slip Rate =1 mm/yr
Based on MW =7.3
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Scenario event:

Assuming fault slip rate =
1 mm/yr
Magnitude = 7.3

Hazard of strain for 2

distances from main

rupture.

Another key assumption:

* Location of primary

rupture has been
identified (with
confidence from
trenching) uncertainty
on location not
considered "



Conclusions

« Aim: outline a standard method for high-res
geodetic data to constrain PFDHA models.

* Results: Geodetic data allows us to gather
thousands of strain profiles.

* Potential to do PFDHA for SS, normal + thrust

« Assumptions& Limitations:

* We quantify strain, not displacement on individual
fractures.

e Can’t discern elastic vs inelastic, we have to assume a
threshold value that exceeds yield strength, or can let
user decide the minimum strain to exceed.

 Data of varying resolution + noise - varying
sensitivities to strain.



Future work

* Going forward:

Most data already gathered
More eq’s (1-4)

Include Kaikoura?

Separate oblique faulting events?

1. Decreases number of data per faulting style

5. Asses whether near-surface geology, fault geometry, sediment thickness etc...
has an effect = this could reduce epistemic uncertainty.

 What we need (data):

2018 M,, 7.5 Palu, Indonesia — Planet labs (free)
2013 M,, 7.7, Balochistan, Pakistan — Landsat (free)
2014 M,, 6.1 Napa, US — lidar, optical (pre-existing)

* Timeline:
1.  Will verify PFDHA code with Rui Chen - visit Sacramento next month.

2. Process more data (<2 months).

3. Publish, < 1 yr timeframe - a method detailing how to use geodetic data for
PFDHA + present results from multiple earthquakes.
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